A Test of Possible NICMOS Non-linearity

نویسندگان

  • Bahram Mobasher
  • Adam Riess
چکیده

Observations of standard stars with NICMOS grism (G096), when compared with the same standards taken by STIS (G750L), show a disagreement over the wavelength range 0.8 to 1 micron. Further comparison with ACS F850LP data confirms thisnon-linearity to be due to NICMOS in the sense that fainter stars in NICMOS appear too faint relative to a brighter normalisation. We investigate this over a wide magnitude range by compiling samples of stars (over the range 8 < J < 17) and galaxies (spanning the range 17 < J < 25), with available data with both NICMOS (F110W and F160W) and ground-based JHbands. We find no difference between the NICMOS F160W and ground-based H-band magnitudes. However, in the case of NICMOS F110W and J-band filters, allowing for differences in the filter response functions, we find a trend at the bright-end (J < 17), confirming a non-linearity but smaller than that was seen in Bohlin effect by a factor of 2-3. No significant slope is seen at the faint-end. This non-linearity is interpreted as being due to trapping and the difference in exposure times between the bright and faint objects (Riess 2005). We conclude that most of the observations will not be strongly affected by this effect as the source count rates are sufficiently high so that the fraction of charge lost to traps is negligible. The most affected observations are for faint sources with relatively

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correcting the NICMOS count-rate dependent non-linearity

We describe a routine to correct NICMOS imaging data for the NICMOS count-rate dependent non-linearity recently discovered by Bohlin et al. (2005) and quantified by de Jong et al. (2006) and Bohlin et al. (2006). The routine has been implemented in the python scripting language and is callable from the shell command line and from iraf. The routine corrects NICMOS count-rate images assuming the ...

متن کامل

NICMOS Count Rate Dependent Non-Linearity in G096 and G141

Since the discovery of the NICMOS count rate dependent non-linearity documented in NICMOS ISR 2005-002, additional tests have been conducted to further understand and quantify the effect. Long integrations of up to 25 minutes exhibited the same level of non-linearity as the original 1-3 minute integrations. Observations of the star P041C on high background from an internal flat field lamp provi...

متن کامل

Non-Linearity Correction Algorithm for the WFC3 IR Channel

WFC3 IR channel data are obtained in the form of multiple, non-destructive readouts, grouped into “ramps”, similar to the method employed by NICMOS. This strategy facilitates the characterization of the non-linearity of the IR Focal Plane Array (FPA), as the detector’s response to a steady signal can be measured multiple times, until the detector becomes saturated. Using test data collected in ...

متن کامل

First On-orbit Measurements of the WFC3-IR Count-rate Non-Linearity

Previous HgCdTe detectors on HST have suffered from a count-rate dependent non-linearity, motivating an investigation of a similar effect on the WFC3-IR detector. An initial measurement of this effect was made by comparing the photometry of star clusters observed over a wide dynamic range and at overlapping wavelengths in WFC3-IR and NICMOS and/or ACS-WFC. Utilizing a color term to account for ...

متن کامل

Testing for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis

The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001